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What Is Coefficient Alpha? An Examination of Theory and Applications

Jose M. Cortina

Psychological research involving scale construction has been hindered considerably by a wide-
spread lack of understanding of coefficient alpha and reliability theory in general. A discussion of
the assumptions and meaning of coefficient alpha is presented. This discussion is followed by a
demonstration of the effects of test length and dimensionality on alpha by calculating the statistic
for hypothetical tests with varying numbers of items, numbers of orthogonal dimensions, and
average item intercorrelations. Recommendations for the proper use of coefficient alpha are of-
fered.

Coefficient alpha (Cronbach, 1951) is certainly one of the
most important and pervasive statistics in research involving
test construction and use. A review of the Social Sciences Cita-
tions Index for the literature from 1966 to 1990 revealed that
Cronbach's (1951) article had been cited approximately 60
times per year and in a total of 278 different journals. In addi-
tion to the areas of psychology in which one may expect to see
alpha used, such as educational, industrial, social, clinical,
child, community, and abnormal psychology, this list of jour-
nals included representatives from experimental psychology, so-
ciology, statistics, medicine, counseling, nursing, economics,
political science, criminology, gerontology, broadcasting, an-
thropology, and accounting. In spite of its widespread use, how-
ever, there is some confusion as to the true meaning and proper
interpretation of the statistic.

In this article I address this confusion in two ways. First, a
theoretical discussion of alpha is presented. This includes some
of the many statements that have been made about alpha and
an attempt to integrate these statements. Second, I take a more
practical approach in which the interpretation of alpha is exam-
ined by observing the changes in alpha as the number of items
and interitem correlations are manipulated.

Forms of Reliability

Nunnally (1967) defined reliability as "the extent to which
[measurements] are repeatable and that any random influence
which tends to make measurements different from occasion to
occasion is a source of measurement error" (p. 206). Nunnally
went on to explain that there are many factors that can prevent
measurements from being repeated perfectly. Although alpha is
sometimes referred to as "the" estimate of reliability, it is not
the only estimate of reliability. The particular estimate of reli-
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ability that one may use depends on the particular error-pro-
ducing factors that one seeks to identify (Cronbach, Gleser,
Nanda, & Rajaratnam, 1972). This is the essence of generaliz-
ability theory (Cronbach et al., 1972), which is probably the
most widely accepted formulation of reliability. Although a de-
tailed explanation of the theory is not presented here (see Car-
dinet, Tourneur, & Allal, 1976, or Katerberg, Smith, & Hoy,
1977, for brief explanations of generalizability theory), the ba-
sic idea is that aspects of tests or scales (e.g., items, subjects, and
raters) are sampled from a predefined domain. Test or scale
variance can be broken down into variance attributable to each
of these aspects and the interactions among them. The estimate
of reliability that one uses must depend on the sources of vari-
ance that one considers relevant. If error factors associated with
the passing of time are of interest, then test-retest or multiple
administrations of parallel tests may be used. If error factors
associated with the use of different items are of interest, then
internal consistency estimates, such as coefficient alpha (which
takes into account variance attributable to subjects and vari-
ance attributable to the interaction between subjects and items),
or single administrations of parallel tests may be used. Coeffi-
cient alpha is obviously not the only estimate of reliability and is
inappropriate and insufficient in many cases.

Integrating the Various Descriptions of Alpha

To provide proper interpretations of alpha or any other statis-
tic, one must first understand its meaning. The literature offers
many different descriptions of coefficient alpha. Some of these
descriptions are contradictory to other such descriptions, some
are not, and although I cannot clear up all of these difficulties,
some attempt to integrate these views can be made.

Given the variety of perspectives in the literature, perhaps
the way to start is to extract those statements about alpha that
are commonly accepted in the literature. There seem to be five
such statements. They are as follows: (a) Alpha is the mean of all
split-half reliabilities (Cronbach, 1951). (b) Alpha is the lower
bound of reliability of a test (Kristoff, 1974; Novick & Lewis,
1967; Ten Berge & Zegers, 1978). (c) Alpha is a measure of
first-factor saturation (Crano & Brewer, 1973; Hattie, 1985). (d)
Alpha is equal to reliability in conditions of essential tau-equiva-
lence (Kristoff, 1974; Novick & Lewis, 1967; Ten Berge &
Zegers, 1978). (e) Alpha is a more general version of the Kuder-
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Richardson coefficient of equivalence (Cronbach, 1951; Fiske,
1966; Hakstian & Whalen, 1976). Before I attempt to integrate
these statements about alpha, it may be useful to explain them a
bit further.

The first statement says that alpha is the mean of all split-half
reliabilities. The truth or falsehood of this statement depends
on the way one chooses to define both split-half reliability and
coefficient alpha. To understand this statement one must un-
derstand the distinction between alpha as defined by Cronbach
and standardized item alpha. The formula for Cronbach's alpha
is

N2 X M(COV)
SUM (VAR/COV) (1)

where N2 is the square of the number of items in the scale,
Af(COV) is the mean interitem covariance, and SUM (VAR/
COV) equals the sum of all of the elements in the variance/co-
variance matrix. The formula for standardized item alpha is
essentially the same. The difference is that, for standardized
item alpha, the average interitem correlation replaces the aver-
age covariance and the sum of the correlation matrix (with ones
on the diagonal) replaces the sum of the variance/covariance
matrix. This means that Cronbach's alpha takes into account
differences in the item standard deviations and is smaller than
standardized item alpha to the extent that these differences
exist. Standardized alpha is appropriate if item standard scores
are summed to form scale scores. Standardized alpha is not
appropriate, however, when one chooses to use the simple raw
score total as the score for an instrument because, in such a
total, differences in item variance affect the total score. In this
case, item standard deviations are relevant to the estimation of
internal consistency.

Spearman (1910) and Brown (1910) have defined the split-
half reliability as the correlation between two halves of a test
(rn), corrected to full test length by the Spearman-Brown proph-
esy formula. Their formula for split-half reliability (rsh) is:

2/v
1 + /Y

(2)

If this is the definition of split-half reliability that is to be used,
then Cronbach's alpha is equal to the mean of all split-half reli-
abilities only if the item standard deviations are equal. Cron-
bach's alpha is smaller than this average split-half reliability to
the extent that there are differences in item standard devia-
tions.

Flanagan (1937) and Rulon (1939) have given a different for-
mulation of split-half reliability that does take into account
standard deviations. Their formula is:

(4r12 x 5, x s2)
(3)

where 5! and s2 are the standard deviations of the halves and s-[2
is the variance of the total test. If this is the definition of split-
half reliability that is used, then Cronbach's alpha is equal to the
average split-half reliability. Formal proof of the equivalence of
these two versions of reliability can be found in various text-
books (e.g., Allen & Yen, 1979; Lord & Novick, 1968) as well as
Cronbach's (1951) orginal article. Standardized item alpha,

which is essentially the average interitem correlation stepped
up with the Spearman-Brown formula, does not equal the aver-
age split-half reliability from either formulation (except in the
extremely unlikely case where the correlations between split
halves equal the average interitem correlation), although it is
closer to the average Spearman-Brown split half than to the
Flanagan-Rulon split half.

Conceptually, the first statement ("Alpha is the mean of all
split-half reliabilities.") implies that coefficient alpha (however
it is calculated) is a stable estimate of split-half reliability be-
cause there is a substantial randomness component to any esti-
mate of split-half reliability. This randomness stems from the
fact that any estimate of split-half reliability that one gets de-
pends, to some extent, on the particular manner in which one
chooses to split the test. Cronbach's alpha, because it is the
mean of all possible splits (as measured by Flanagan and
Rulon), is not subject to this randomness and is therefore more
stable.

The second and fourth statements, which deal with alpha as a
lower bound of reliability that is equal to reliability under tau-
equivalence, are related to each other and are described in more
detail later.

The third statement says that alpha is a measure of first-fac-
tor saturation. This statement suggests that alpha is a measure
of the extent to which there is a general factor present in a set of
items and, therefore, the extent to which the items are interre-
lated. This statement, however, contradicts what was said by
Cronbach in the original article, and it has been shown to be
false with respect to Cronbach's alpha by subsequent research.
This research and its implications for the third statement are
discussed later. What is important is that the third statement is
true, at least to some extent, with respect to standardized item
alpha (Kaiser, 1968). Kaiser (1968) showed that, if all item in-
tercorrelations were equal to the average item intercorrelation
(i.e., the set of items has exactly one principal component), then
standardized alpha is directly related to the eigenvalue of the
first unrotated principal component. Because this relationship
depends on unidimensionality, standardized alpha is inappro-
priate to the extent that more than one factor is responsible for
the correlations among a set of items.

What Does Alpha Measure?

The fifth statement says that alpha is a general version of the
Kuder-Richardson coefficient of equivalence. It is a general
version because the Kuder-Richardson coefficient applies only
to dichotomous items, whereas alpha applies to any set of items
regardless of the response scale. This fact is explained thor-
oughly in Cronbach's (1951) article and need not be repeated
here, but the description of alpha as a coefficient of equivalence
does lead to another important issue.

In Cronbach's (1947) classic description of different types of
reliability, test variance was depicted as a sum of general,
group, and specific variance and changes in each (if the test is
repeated) as well as a residual term. For a coefficient of equiva-
lence, error is defined as the variance due to specific factors and
a residual term (Cronbach, 1947). For some operationalizations
of reliability, some or all of the variance associated with group
factors may contribute to error. This is the point that Hattie
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(1985) and Cureton (1958) were trying to make. Alpha is said to
be a measure of first-factor saturation (i.e., the extent to which a
certain factor is present in all items), and although a set of items
with a high alpha usually has a strong common factor, this is
not necessarily the case. Green, Lissitz, and Mulaik (1977), in a
Monte Carlo study, generated data corresponding to a 10-item
test that occupied a five-dimensional common factor space.
Each item loaded equally (.45) on two of five orthogonal factors,
no two items loaded on the same two common factors, and each
item had a communality of .90. The alpha for this set of items
was calculated to be .81. By commonly accepted interpretation,
this would be taken as an indication of unidimensionality
when it should not be. Instead, it is an indication that the set of
items conforms to Cronbach's (1951) definition of equivalence,
which is that there is very little variance specific to individual
items. All 10 items loaded high on more than one of the factors;
there was very little item-specific variance. The utility of infor-
mation about the amount of item-specific variance in a test is
described in the Discussion.

Another way to approach this issue of dimensionality is to
examine the confusion in the literature of the terms internal
consistency and homogeneity. Some authors have failed to make
a distinction between the two terms (e.g., Nunnally, 1970) when
it seems that a distinction needs to be made. Internal consis-
tency refers to the degree of interrelatedness among the items
(Crano & Brewer, 1973; Green et al., 1977), whereas homogene-
ity refers to unidimensionality (Green et al., 1977; Gulliksen,
1950; Lord & Novick, 1968). As Green et al. (1977) pointed out,
internal consistency is a necessary but not sufficient condition
for homogeneity. Alpha is, among other things, a function of
internal consistency, that is, of interrelatedness of items. A set
of items, however, can be relatively interrelated and multidi-
mensional. The Monte Carlo study by Green et al. (1977)
pointed this out. Alpha was high in spite of the fact that one
third of the item intercorrelations were zero. So, one conclusion
that can be drawn with respect to what alpha measures is this:

It is a function of the extent to which items in a test have high
communalities and thus low uniquenesses. It is also a function of
interrelatedness, although one must remember that this does not
imply unidimensionality or homogeneity.

earlier, is a function of the size of the average correlation among
items and can be large in spite of a wide range of item inter-
correlations. The precision of alpha, because it is a function of
the spread of item correlations, reflects this range of correla-
tions regardless of the source or sources of the range (e.g., mea-
surement error or multidimensionality). For example, examine
the item intercorrelation matrices for two 4-item tests in
Table 1.

In spite of the fact that these two intercorrelation matrices
are radically different from one another, standardized alpha for
each of these two sets of items is .63. The difference is reflected
in the standard error or precision of the estimate of reliability.
The precision estimate for the first matrix is obviously zero.
The estimate of reliability is the same no matter which of these
items one uses to calculate it. The precision estimate for the
second matrix, however, is .13. Given the heterogeneity of the
second set of items, the estimate of reliability varies greatly
depending on which items are chosen to represent this domain
and to estimate alpha in a particular instance. Also, the inter-
correlations in the second matrix suggest that the set of items is
composed of two dimensions. A large standard error, although
it does not provide enough information by itself to prove multi-
dimensionality, is a symptom of multidimensionality. The re-
sulting implications for interpreting alpha are discussed later.

A final implication of the earlier quotation from Nunnally
(1978) is that the assumptions that one makes about how items
are to be sampled from a domain affects the estimate of reliabil-
ity. For example, standardized alpha for both matrices in Table
1 is .63. However, parallel forms reliability (Lord & Novick,
1968, p. 98), which assumes overall parallelism of composites
(instead of random sampling from the domain assumed by
alpha), yields a higher estimate of reliability in the heteroge-
nous case (.84) than it does in the homogenous case (.63). The
reason for this is that parallel forms reliability, in essence, con-
siders the interrelatedness of sets of items within each factor,
whereas alpha considers the interrelatedness of the total set of
items. Because the correlations among items within factors is
higher in the heterogenous case than in the homogenous case,
parallel forms reliability is higher in the heterogenous case. It

Precision of Alpha

It was mentioned above that a set of items can be somewhat
interrelated and multidimensional. This is not so much an issue
for the level of alpha, but rather for the precision of alpha. As
Nunnally (1978) explained, "To the extent that correlations
among items in a domain vary, there is some error connected
with the average correlation found in any particular sampling
of items" (p. 206).

Precision is measured in terms of the standard error of item
intercorrelations, which, in turn, is a function of the variance of
the item intercorrelations. This is clearly evident in the formula
for the standard error of alpha:

SDr

[(1/2 x / c x [ / c - 1])- (4)

where SDr is the standard deviation of item intercorrelations
and k is the number of items. The level of alpha, as I show

Table 1
Intercorrelation Matrices for Two Sets of Items With
Different Standard Errors of Reliability

No. of items

No. of items

Precision estimate = 0

1
2
3
4

—
.30
.30
.30

—
.30
.30

—
.30

Precision estimate = .13

.70 —

.10 .10

.10 .10 .70
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must be made clear, however, that parallel forms reliability is
only appropriate when composite parallelism (not item-for-
item parallelism) is a reasonable assumption. That is, parallel
forms are constructed so that the multiple factors represented
in the domain of items are represented equally in both parallel
forms.

Alpha as a Reliability Estimate

If one combines the second and fourth statements ("Alpha is
the lower bound of reliability of a test." and "Alpha is equal to
reliability in conditions of essential tau-equivalence."), then
one sees that Cronbach's alpha is a lower bound of reliability
and that it approaches reliability as the measurements become
essentially tau-equivalent. Measurements are essentially tau-
equivalent if they are linearly related and differ only by a con-
stant. Cronbach's alpha is a lower bound of reliability because
perfect essential tau-equivalence is seldom if ever achieved
(standardized alpha is not a lower bound, but is a direct approx-
imation of reliability given items with equal observed variance).
When tests comprise equal portions of general and group fac-
tor variance (in Cronbach's, 1947, model), then their items are
essentially tau-equivalent, and Cronbach's alpha equals reliabil-
ity. So, a second statement that we can make about alpha is this:

As the items in tests approach essential tau-equivalence (i.e., lin-
early related and differing only by a constant), as they do when the
tests are composed of equal portions of general and group factor
variance, Cronbach's alpha approaches reliability. When test
items are exactly essentially tau-equivalent, Cronbach's alpha
equals reliability.

Current Usages of Alpha

Another lesson to be learned from Green et al.'s (1977) Monte
Carlo study is that alpha (either Cronbach's or standardized) is a
function of the number of items in a scale. Although most who
use alpha pay lip-service to this fact, it seems to be forgotten
when interpreting alpha. Most recent studies that have used
alpha imply that a given level, perhaps greater than .70, is ade-
quate or inadequate without comparing it with the number of
items in the scale. Any perusal of the recent literature in applied
psychology supports this statement. This acceptance of a > .70
as adequate is implied by the fact that a > .70 usually goes
uninterpreted. It is merely presented, and further scale modifi-
cations are seldom made. This is clearly an improper usage of
the statistic. As an example, I compare the meaning of standard-
ized a = .80 for scales made up of 3 and 10 items.

For a 3-item scale with a = .80, the average interitem correla-
tion is .57. For a 10-item scale with a = .80, the average interitem
correlation is only .28. This is strikingly different from .57 and
underscores the fact that, even without taking dimensionality
into account, alpha must be interpreted with some caution.
This is not to say that the absolute level of alpha is meaningless.
The proportion of error variance for a test or scale with a = .80
is exactly the same for any test regardless of the number of
items. What one must keep in mind when evaluating test or
scale characteristics is that, for example, 40 items (any 40 items
if one assumes they are not correlated zero or negatively with
each other) has a relatively large alpha simply because of the

number of items, and number of items is, to say the least, an
inadequate measure of test or scale quality. This is not a criti-
cism of alpha per se. As I said, alpha is a sound measure of
proportion of error variance regardless of test length. This sim-
ply suggests that when many items are pooled, internal consis-
tency estimates are relatively invariant (i.e., large) and therefore
somewhat useless.

One reason for the misuse of alpha in applied psychology is
that there seems to be no real metric for judging the adequacy
of the statistic. Experience with the literature gives one some
general idea of what an acceptable alpha is, but there is usually
little else to go on. Note, however, that those who make deci-
sions about the adequacy of a scale on the basis of nothing more
than the level of alpha are missing the point of empirically
estimating reliability. The level of reliability that is adequate
depends on the decision that is made with the scale. The finer
the distinction that needs to be made, the better the reliability
must be. For example, the reliability of the Scholastic Aptitude
Test is quite adequate for distinguishing between a 750 scorer
and a 450 scorer. Its reliability is not adequate for distinctions
between scores of 749 and 750. Thus, any judgment of ade-
quacy, even in research, needs to consider context (J. Hollen-
beck, personal communication, June 19,1991).

Number of Items, Dimensionality, and Alpha

It has been said that alpha is appropriately computed only
when there is a single common factor (Cotton, Campbell, &
Malone, 1957). If there is only one common factor, then alpha is
a measure of the strength of that factor. The problem is that,
just as the psychological literature reflects no clear understand-
ing of the extent to which alpha is affected by the number of
items, so does it reflect no clear understanding of the extent to
which alpha is affected by dimensionality.

Green et al. (1977) gave some notion of the extent to which
alpha changes as a function of the number of items. From a
practical standpoint, however, there are two problems in the
interpretation of their results. First, they manipulated several
aspects of sets of items other than number of items, such as
number of factors that determine items and communalities.
This makes it difficult to assess the effects of any one variable.
Second, Green et al. manipulated numbers of items between 19
and 75. This, in turn, causes two problems: (a) The relationship
between number of items and alpha is curvilinear (Komorita &
Graham, 1965) and begins to level off before the number of
items reaches 19, and (b) many if not most of the scales that are
used in applied research today have fewer than 19 items.

The fact that the numbers of items in the data created by
Green et al. (1977) are so large also hinders those who generally
use somewhat shorter scales from seeing the extent to which the
number of items in a scale hides the dimensionality of a scale as
measured by alpha. What may be useful is a display of the
effects of changes in dimensionality and number of items on
coefficient alpha. This is precisely my next goal. Specifically,
alpha was calculated for scales with different numbers of items,
different numbers of orthogonal dimensions, and different
average item intercorrelations. Specifically, alphas were calcu-
lated for scales with 1,2, and 3 dimensions, 6,12, and 18 items,
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and average item intercorrelations of .30, .50, and .70. Before I
present these data, two clarifications are important.

First, dimensions within scales were made orthogonal in the
interest of simplicity. Although few, if any, dimensions in reality
are completely orthogonal, especially within the same scale,
any level of dimension intercorrelation for this study would
have been chosen completely arbitrarily. Also, nonzero dimen-
sion intercorrelations only serve to strengthen my claims (i.e.,
that alpha alone is not a measure of unidimensionality). When
there are, in fact, completely independent dimensions, alpha is
at its lowest.

Second, average item intercorrelation refers to the average
item intercorrelation within each dimension of a scale. So, for
example, an average item intercorrelation of .50 in the one di-
mension condition means that the average item intercorrela-
tion for the entire scale is .50, whereas the same average item
intercorrelation in the two-dimension condition means that
the average within each of the two dimensions is .50. The aver-
age for the entire scale is smaller because items across dimen-
sions were made orthogonal and, therefore, correlated zero.

Results

Alphas for the conditions described earlier are presented in
Table 2.

The first three rows in Table 2 display alphas for unidimen-
sional scales and suggests three conclusions. First, number of
items has a profound effect on alpha, especially at low levels of
average item intercorrelation. Second, in a unidimensional
scale an average item intercorrelation of .50 yields alphas that
are acceptable by convention (i.e., greater than .75) regardless of
number of items. Third, if a scale has enough items (i.e., more
than 20), then it can have an alpha of greater than .70 even
when the correlation among items is very small. In short, di-

mensionality notwithstanding, alpha is very much a function of
the number of items in a scale, and although alpha is also a
function of item intercorrelation, it must be interpreted with
number of items in mind. Alpha gives us information about the
extent to which each item in a set of items correlates with at
least one other item in the set (i.e., the communalities of the
items). Such groups of items within a set are usually more inter-
pretable than items that stand alone in a correlation matrix.
(This notion is explained in more detail later.) Therefore, alpha
offers important information, but one must keep in mind the
fact that alpha does not offer information about other types of
error, such as error associated with stability over time (e.g.,
changes in ability, practice, or memory).

The relationship between test length and reliability has long
been known and is the subject of graphs in many psychometric
texts (e.g., Lord & Novick, 1968). The first three rows in Table 2
simply show the somewhat surprisingly large extent to which
this is true. Perhaps less known, or at least less appreciated, are
the results displayed in the parts of Table 2 labeled "Two di-
mensions" and "Three dimensions."

The second set of rows displays alphas and precision esti-
mates for scales with two dimensions and, besides adding sup-
port to the conclusions drawn from the first set of rows, sug-
gests three conclusions with respect to dimensionality.

First, if a scale has more than 14 items, then it will have an
alpha of .70 or better even if it consists of two orthogonal di-
mensions with modest (i.e., .30) item intercorrelations. If the
dimensions are correlated with each other, as they usually are,
then alpha is even greater. Second, if the two dimensions them-
selves have high average item intercorrelations (i.e., r > .70),
then alpha can be quite good (i.e., greater than .85). Third, the
precision of alpha (the standard error of the correlations in the
item intercorrelation matrix) offers far more information about

Table 2
Alphas and Precision Estimates for Scales With Different Numbers of Dimensions,
Different Numbers of Items, and Varying Average Intercorrelations

Average item intercorrelation

No. of items

6
12
18

6
12
18

6
12
18

a

.72

.84

.88

.45

.65

.75

.28

.52

.64

r= .30

Precision

.04

.02

.01

.03

.02

.01

r =

a

One dimension

.86

.92

.95

Two dimensions

.60

.78

.85

Three dimensions

.40

.65

.76

.50

Precision

.07

.03

.02

.05

.03

.02

a.

.93

.96

.98

.70

.85

.90

.49

.74

.84

r= .70

Precision

.09

.04

.03

.08

.04

.02

Note. Because the scales with one dimension are absolutely unidimensional, precision = 0 for all of them.
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dimensionality than the size of alpha. For example, as indicated
in the second set of rows, coefficient alpha is .85 for a test with
12 items in the instance of a correlation of .70. This sizable
alpha, however, does not say anything about unidimensionality.
Instead, the estimate of precision (.04) suggests that there is a
departure from unidimensionality. Also, it is important to re-
member that although the sizable alpha gives important infor-
mation about the communalities of the items, it does not give
information about stability across time.

The third set of rows displays alphas and precision estimates
for scales with three dimensions and serves to strengthen the
points made with respect to the second set of rows.

Specifically, the third set shows that, given a sufficient num-
ber of items, a scale can have a reasonable alpha even if it con-
tains three orthogonal dimensions. If the three dimensions
themselves have average item intercorrelations of .70 or better
and are somewhat correlated with each other, then the overall
scale has an alpha of .80 or better. Again, any attempts to draw
conclusions about dimensionality are better served by an esti-
mate of precision. For example, in the 12-item case with the
correlation of .70, coefficient alpha is .74. The precision of
alpha, however, is .04, which reflects the extent to which the
correlations in the item intercorrelations matrix differ from
each other.

One final note about this table is that although the purpose of
presenting this table is to show that alpha can be high in spite of
low item intercorrelations and multidimensionality, alpha does
increase as a function of item intercorrelation, and alpha does
decrease as a function of multidimensionality. The lesson to be
learned from this table is that alpha can be high in spite of low
item intercorrelations and multidimensionality.

Discussion

The purpose of this article is to explain how coefficient alpha
has been misunderstood in applied psychological research and
to show how alpha is affected by the number of items, item
intercorrelations, and dimensionality. In an attempt to promote
appropriate use of alpha, I provide an explanation of the origi-
nal assumptions of the statistic as a coefficient of equivalence
and the limitations on interpretation that these assumptions
impose.

I demonstrate the extent to which alpha is affected by the
number of items, average item intercorrelation, and dimension-
ality by calculating alphas for scales with three different num-
bers of dimensions, levels of average item intercorrelation, and
numbers of items. These calculations show that alpha can be
rather high and acceptable by the standards of many (greater
than .70) in spite of low average item intercorrelation or multi-
dimensionality, provided there is a sufficient number of items.
Although most researchers who use coefficient alpha are aware
of these issues, the results presented in Table 2 point out the
surprising range of alphas that are possible with increases in the
number of items as well as the surprising size of alphas that are
possible even with pronounced multidimensionality.

It may be argued that multidimensionality is irrelevant be-
cause if a test has a good alpha, then it is free of error associated
with the use of different items, just as a test with good test-re-
test reliability is free of error associated with the passing of

time. This is certainly true, but it does not mean that the total
score on a multidimensional test has a straightforward or un-
ambiguous interpretation. An adequate coefficient alpha (num-
ber of items notwithstanding) suggests only that, on the aver-
age, split halves of the test are highly correlated. It says nothing
about the extent to which the two halves are measuring the
construct or constructs that they are intended to measure. Even
if the total score of a test could perhaps be used for some practi-
cal purpose like selection, it could not be interpreted. In other
words, the test would be known to measure something consis-
tently, but what that is would still be unknown. Some form of
construct validation is necessary to establish the meaning of
the measure.

When Is Alpha Useful?

Although the results of this article may be interpreted as
pessimistic toward the usefulness of coefficient alpha, this was
not intended. Instead, the purpose was to remind those who
construct tests and need to use some measure of internal con-
sistency that alpha is not a panacea. Just like any other statistic,
it must be used with caution. Coefficient alpha is useful for
estimating reliability in a particular case: when item-specific
variance in a unidimensional test is of interest. If a test has a
large alpha, then it can be concluded that a large portion of the
variance in the test is attributable to general and group factors.
This is important information because it implies that there is
very little item-specific variance. These concepts come from
Cronbach (1947) and are analogous to factor-analytic terms.
For example, consider a standardized test like the Graduate
Record Examination. The general factor for such a test may be
the reading component that is present in all of the items. The
group factors may be Verbal, Quantitative, and Analytical. Any
additional variance is item-specific. This item-specific vari-
ance is called the uniqueness of the item, and it is this unique-
ness that is assessed with coefficient alpha. Again, this is im-
portant information because we can usually interpret general
and group factors (as has been done with the Graduate Record
Examination) but not item-specific variance. The problem with
interpretation arises when large alpha is taken to mean that the
test is unidimensional.

One solution to such problems with the statistic is to use one
of the many factor-analytic techniques currently available to
make sure that there are no large departures from unidimen-
sionality. For example, the first step in establishing unidimen-
sionality is to conduct a principal-components analysis of a set
of items. This provides information similar to that provided by
the estimate of precision. If this analysis suggests the existence
of only one factor, then alpha can be used to conclude that the
set of items is unidimensional. The principal-components anal-
ysis alone does not provide enough evidence to conclude that a
set of items is unidimensional because such an analysis may, for
example, yield only one factor even if the items have correla-
tions of. 10 with each other. In essence, what this means is that
alpha can be used as a confirmatory measure of unidimension-
ality or as a measure of the strength of a dimension once the
existence of a single factor has been determined. As always, the
number of items must be kept in mind. For these purposes,
Table 2 or similar tables and graphs in Lord and Novick (1968)
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can be used as a referent so that one can plug in the number of
items in a scale and its average intercorrelation or its alpha to get
an idea of the extent to which an alpha of, for example, .70
really does reflect internal consistency instead of irrelevancies
like the number of items.
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